```
int u1, u2;
unsigned long elm1[20], _mulpre[16][20], res1[40], res2[40]; 64 bits long
res1, res2 initialized to zero.
l = 60;
while (l)
{
for (i = 0; i < 20; i += 2)
{
u1 = (elm1[i] >> l) & 15;
u2 = (elm1[i + 1] >> l) & 15;
for (k = 0; k < 20; k += 2)
{
simda = _mm_load_si128 ((__m128i *) &_mulpre[u1][k]);
simdb = _mm_load_si128 ((__m128i *) &res1[i + k]);
simdb = _mm_xor_si128 (simda, simdb);
_mm_store_si128 ((__m128i *)&res1[i + k], simdb);
simda = _mm_load_si128 ((__m128i *)&_mulpre[u2][k]);
simdb = _mm_load_si128 ((__m128i *)&res2[i + k]);
simdb = _mm_xor_si128 (simda, simdb);
_mm_store_si128 ((__m128i *)&res2[i + k], simdb);
}
}
l -= 4;
All res1, res2 values are left shifted by 4 bits.
}
```

The above mentioned code is called many times in my program (profiler shows 98%).

EDIT: In the inner loop, res1[i + k] values are loaded many times for same (i + k) values. I tried with this inside the while loop, I loaded all the res1 values into simd registers (array) and use array elements inside the innermost for loop to update array elements . Once both for loops are done, I stored the array values back to the res1, re2. But computation time increases with this. Any idea where I got wrong? The idea seemed to be correct

Any suggestion to make it faster is welcome.